Handbook of Combinatorial Optimization by Ding-Zhu Du

Page Updated:
Book Views: 21

Author
Ding-Zhu Du
Publisher
Springer
Date of release
Pages
2406
ISBN
9781461379874
Binding
Paperback
Illustrations
Format
PDF, EPUB, MOBI, TXT, DOC
Rating
4
60

Advertising

Get eBOOK
Handbook of Combinatorial Optimization

Find and Download Book

Click one of share button to proceed download:
Choose server for download:
Download
Get It!
File size:5 mb
Estimated time:4 min
If not downloading or you getting an error:
  • Try another server.
  • Try to reload page — press F5 on keyboard.
  • Clear browser cache.
  • Clear browser cookies.
  • Try other browser.
  • If you still getting an error — please contact us and we will fix this error ASAP.
Sorry for inconvenience!
For authors or copyright holders
Amazon Affiliate

Go to Removal form

Leave a comment

Book review

Combinatorial (or discrete) optimization is one of the most active fields in the interface of operations research, computer science, and applied math­ ematics. Combinatorial optimization problems arise in various applications, including communications network design, VLSI design, machine vision, air­ line crew scheduling, corporate planning, computer-aided design and man­ ufacturing, database query design, cellular telephone frequency assignment, constraint directed reasoning, and computational biology. Furthermore, combinatorial optimization problems occur in many diverse areas such as linear and integer programming, graph theory, artificial intelligence, and number theory. All these problems, when formulated mathematically as the minimization or maximization of a certain function defined on some domain, have a commonality of discreteness. Historically, combinatorial optimization starts with linear programming. Linear programming has an entire range of important applications including production planning and distribution, personnel assignment, finance, alloca­ tion of economic resources, circuit simulation, and control systems. Leonid Kantorovich and Tjalling Koopmans received the Nobel Prize (1975) for their work on the optimal allocation of resources. Two important discover­ ies, the ellipsoid method (1979) and interior point approaches (1984) both provide polynomial time algorithms for linear programming. These algo­ rithms have had a profound effect in combinatorial optimization. Many polynomial-time solvable combinatorial optimization problems are special cases of linear programming (e.g. matching and maximum flow). In addi­ tion, linear programming relaxations are often the basis for many approxi­ mation algorithms for solving NP-hard problems (e.g. dual heuristics).


Readers reviews